



### Thermal Management Systems Symposium

Co-located with SAE Energy & Propulsion Conference & Exhibition

October 14-15, 2025 | Ypsilanti, Michigan

sae.org/tmss





### Thermal Management Systems Symposium

October 14-15, 2025 Ypsilanti, Michigan

### **AI-Driven Climate Control**



## Simply Cozy – The Modules



### Ease of Use

- user-centered
- intuitive climate operating philosophy
- new look & feel

## Simply Cozy – The Modules



### **Ideal Individual Comfort**

- machine learning for completely individualized thermal comfort
- personalized climate calibration

## Simply Cozy – The Modules



### Al-Driven Climate Control

 Artificial intelligence for the development of climate functions and their calibration





### Thermal Management Systems Symposium

October 14-15, 2025 Ypsilanti, Michigan

### **AI-Driven Climate Control**

## Al-Driven Climate Control – The Challenges



- Increasing system complexity
  - Extended range of sensors Additional climate components
  - · Seat-related air conditioning
  - Highly networked heat sources and sinks heat pump systems
- Increasing demands on occupant comfort and efficiency
- Decreasing development times
- Increasing pressure to be innovative
- Increasing risk of errors

## Al-Driven Climate Control – The Challenges



# Mastering complex functions with AI

- Al must fulfill some requirements to be usable as functional software for an automatic climate controller
  - Partially varying time dependencies of input and output data both on the system side and in terms of perception by occupants
  - Different relevance of sensor data depending on the specific sensor values
  - Beneficially puts history of conditions in context of current condition

## Al-Driven Climate Control – Our Solution



### **IAV Solution**

- Artificial neural networks inspired by the highly selective perception of the human brain
- Features:
  - Highly precise
  - Low resource requirements
  - Fast training success
  - Only sensor data and target values are required
    - There are no parameters and their chains of action that need to be known

## Al-Driven Climate Control – Our Solution



- Further features
  - Reduced complexity
    One step function development and
    calibration
  - Parallel calibration possible
    worldwide in different climate zones by
    several developers
  - Classic functions in addition to Al possible e.g. defog / defrost, consistency checker
  - In accordance with homologation the final trained model is transferred unalterably to the control unit

## Al-Driven Climate Control – Tech Insides



#### **Underlying technology**

- IAV-AI is based on the DA-RNN architecture, inspired by the selective attention of the human brain and has been further improved
  - Precise conditional and temporal selection of relevant values
  - In comparison to other architectures significantly improved precision of prediction
  - Processes variable number and type of input and output data via sophisticated encoder and decoder [3]
  - Compressed data reduce resource consumption

### Al-Driven Climate Control – Tech Insides



- High proportion of virtual development possible
- No "classic" function development necessary
- Calibration independent of model and parameter operating chain knowledge
- Detailed tuning in the vehicle

#### **Training Process**

- Feed inputs (sensors, system states, environmental and other data) and outputs (controller targets) to the Al
  - e.g. available **recorded data** of the previous model version
  - **simulated data** for interior comfort / thermal management system.
- Whenever sufficient accuracy is reached, integrate it in your target vehicle
- Fine tune AI while using the vehicle and performing specific tests
- Need for changes in target values are inputted "in realtime" from occupants
- Feedback from target functions (including measurement data and comfort models etc.) possible as well

### Al-Driven Climate Control – Results



#### Accuracy of setpoint formation

- Training on a subset of measurement data from a test vehicle, testing on the remaining data
- Comparison of target interior temperature and proportion of air recirculation prediction with high-performance AI architectures optimized for the use case
- Result: none of the comparative architectures can predict the control variables with sufficient accuracy.
- IAV-AI predicts almost completely in line with the real value
  - Almost no deviations
  - Steps, variations and static conditions are excellently reproduced or predicted, respectively

#### SAE International® TMSS 2025

### Al-Driven Climate Control – Results



#### **Training error**

- Compared to other architectures
  - Better results in the first training run MSE ~ 0.1 vs. approx. 4
  - Only 5% of the training epochs are sufficient for a comparably relative rate of change of further MSE reduction
  - 3 orders of magnitude lower errors MSE ~ 0.001 vs. approx. 2

### Al-Driven Climate Control – Results



#### **Training error**

- Compared to other architectures
  - Better results in the first training run MSE ~ 0.1 vs. approx. 4
  - Only 5% of the training epochs are sufficient for a comparably relative rate of change of further MSE reduction
  - 3 orders of magnitude lower errors MSE ~ 0.001 vs. approx. 2

#### Test error

- Dramatically reduced test error compared to comparison architectures
- Only rare events stand out as singular peakse.g. by sensor init values
- Almost no deviation from zero-error line

## Al-Driven Climate Control – Conclusion



#### **Advantages of AI-Driven Climate Control**

- Potentially faster and less complex calibration process
- No model development
- Challenging conditions are easily mastered
- Reduced complexity creates space for innovations
- Reduced probability of errors
  new function implementation, tuning of correct
  parameters for specific conditions

#### Timely parallel work possible worldwide

• High number of developers provide average of individual preferences (thermal perception) and thus potentially matching a larger quantity of customers

### Contact Info

- Thank you
  - Dr. Martin Noltemeyer
  - IAV
  - Rockwellstrasse 3, 38518 Gifhorn, Germany
  - +49 152 5455 9337
  - Martin.Noltemeyer@iav.de