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BEV’s driving range can be reduced up to 40% due to thermal 
management requirements

Reference BEV @ -10 °C

Reference BEV @ 20°C
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Battery electric 
energy
 100%

Auxiliaries 2.3%

Cabin Heater 35.3%

Mechanical Energy 41.4%

Losses 14.1%

Battery Heater 6.9%

Source/Note: 1) Losses can also be significantly higher, “normal” conditions & typical drive cycle assumed
Note: Indicative for state-of-the-art BEV, but heating and cooling loads strongly depending on vehicle and operating conditions; Source: FEV  

•  Illustrative
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The methods of machine learning (ML) can be used to drive forward 
the simulation models or controls of thermal management systems

System 
Identification

Reinforcement 
Learning𝑥

𝑦1

𝑦2

ML-Based

Model Acceleration
Creating accelerated models that capture the essential 
behavior of complex systems enabling real-time applications.

Precision Enhancement
Improving the accuracy of models by refining them 
with machine learning techniques.

Black-Box Identification
Identifying system behavior and dynamics without 
detailed knowledge of parameters or internal.

Complex Systems
Optimizing systems with interconnected components that are 
difficult to model using traditional approaches with machine 
learning techniques.

Self-Optimization
Enabling systems to autonomously improve performance 
over time by learning from interactions with the 
environment.

Adaptive
Adjusting control strategies dynamically in response to 
changing conditions and system states.
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The complexity and versatility of thermal systems is increasing and is 
having a growing impact on the scope of simulation models

•  Illustrative

Challenges for the simulation of thermal management systems
• Increasing number of interconnectable circuits
• More complex refrigerant circuits with heat pump functionalities

Basic Systems Advanced Systems Highly Integrated Systems

The development of modern control strategies requires fast Running models
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The use of system identification can help to significantly accelerate 
complex thermal system models

•  Illustrative

An increase in model performance sustainably increases their usability
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The complexity and versatility of thermal systems is increasing and is 
having a growing impact on the scope of simulation models

•  Illustrative

Preparation for the system identification:
• Identify physical system boundaries and related signal ranges for adjustment of the system identification 

process
• Define relevant control signals and limitations
• Definition of targets for model accuracy, use cases and desired run-time

The development of modern control strategies requires fast Running models

Refrigerant Circuit Black-box
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The use of system identification can help to significantly accelerate 
complex thermal system models

• Comparison of heat flow between phys. model and neural network. Example of a heat exchanger in the 
AC circuit (HTR condenser) -  Exemplary results for a SC03 at hot conditions (35 °C)

• Model was accelerated to be used for control strategy development
• Overall run-time improvement of up to 44 %

An increase in model performance sustainably increases their usability
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The development of thermal systems for future vehicle concepts will 
require a combination of different control approaches

Conventional 
Rule-Based 
Control

Conventional Rule-based Control uses predefined if-then logic to manage 
thermal conditions based on sensor data. It’s straightforward and easy to 
implement but lacks adaptability to dynamic environments, as it doesn’t 
consider multiple interacting factors.

Model 
Predictive 
Control

Model Predictive Control (MPC) employs mathematical models to predict 
future states and optimize control actions over a defined horizon. It 
minimizes a cost function like energy use or temperature deviation, making 
it more effective in complex environments, though it requires accurate 
modeling and higher computational power.

Machine 
Learning-
Based Control

Machine Learning-based Control utilizes data-driven models to learn and 
predict optimal thermal management strategies from past data and real-
time inputs. It adapts to nonlinear systems and improves over time, 
making it ideal for variable environments, though it demands large 
datasets and more complex implementation.
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Focus: The right approach for the system to be controlled 
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The development of thermal systems for future vehicle concepts will 
require a combination of different control approaches

Conventional 
Rule-Based 
Control

Pr
os

• Simplicity

• Predictability

• Low Cost

C
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• Limited Adaptability

• Complex calibration

• Sub-optimal Performance

Model 
Predictive 
Control

• Optimization 

• Flexibility

• Improved Performance

• Complexity

• Implementation Complexity

• Model Dependency

Machine 
Learning-
Based Control

• Adaptability

• Optimization

• Scalability

• Data Dependency

• Interpretability

• Implementation Complexity

Focus: The right approach for the system to be controlled 
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Model predictive control (MPC) approaches can be variably adapted to 
optimize system behavior in applications of thermal management
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• Exploitation of temperature 
dependent efficiencies of powertrain 
components

• Monitoring of powertrain temperature 
while driving (sensors & digital twin)

• Demand-oriented cooling of the 
components to reduce auxiliary 
energy demand

• Consideration for preceding driving 
profile & ensuring performance 
reserves

Drivetrain Efficiency
• Charging and discharging limitations 

are highly temperature dependent

• Cell temperatures have an impact on 
battery ageing effects

• Predictive preconditioning of the 
battery can help to reduce charging 
times

• Additional criteria like State of Health 
(SoH) can be considered in the 
cooling strategy

Charging Time & SoH
• Cabin conditioning has a significant 

impact on driving range at extreme 
ambient conditions

• MPC contributes to identify the best 
compromise between thermal 
comfort and energy demand

• Active handling of air humidity as part 
of interior comfort and safety 
(window fogging)

• Air Quality Management

Thermal Comfort & Energy
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The modular functional architecture of the model predictive controls 
allows a wide range of customization options

Desired 
Route

Cloud Services

Traffic POI

Weather

Vehicle Interface

Temperatures

Energy & SoC

Comfort & Health

`
System Model

Battery

Cabin

acados

SQP

Optimization

Exemplary Functional Architecture for a Cabin and Battery MPC 

Request for External Data Model Predictive Control Algorithm

Trip Prediction
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• Model Predictive Control Algorithm

− Tailored to target vehicle

− Adapted to the configuration of air conditioning 
system

− Flexibility in the configuration of the interfaces

• Optimization of Energy Consumption

− Consideration of LV and HV consumers

− Maximum usage of air recirculation & optimized 
control 

• Maintaining Comfort and Air Quality

− Comfort evaluations can be implemented

− Limiting CO2 concentration & other air quality 
criteria

− Active humidity control

In a model-predictive control strategy, a wide variety of targets can be 
combined and taken into account for optimization

• Prediction of the battery load & boundary conditions

− According to planned route

− Traffic information via external data sources

− Ambient temperature & Weather conditions

• Optimization Target of MPC Control Approach

− Minimize energy consumption

− Minimize charging stop duration

• Consideration of the operating conditions for battery

− Maximum charging and discharging powers

− Maximum cell temperatures & temperature 
differences

− Consideration of ageing effects

Predictive Cabin Conditioning Predictive Battery Conditioning

UP TO:

55 % Energy Savings for Cabin Conditioning

UP TO:

  3 % Driving Range Increase 

10 % Charging Time Reduction
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Future applications require a holistic approach to predictive thermal 
management, which can flexibly fulfill requirements

Integrated systems benefit from a holistic 
evaluation of energy consumption
• Development of an optimization-based control 

strategies for thermal systems
• Complete vehicle thermal management 

controlled by MPC 
• Connection of different sub-systems via highly 

integrated cooling circuits or sophisticated 
heat pump systems

• Can be adapted to various vehicle and 
thermal system topologies

• Enhanced performance by machine learning 
extensions

Powertrain 
Conditioning

Battery
Conditioning

Cabin
Conditioning
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Reinforcement learning (RL) for the optimization-based control of a 
thermal management systems

Agent

Main Network
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Coolant Pump

Radiator Bypass 

Valve

Fan Solver Config

𝑠t
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Introduction & Overview
• Development of an optimization-based control 

strategies for thermal systems
• Investigation on different RL options
• Fan, pump and valve control for a basic  

thermal system of a BEV
• Single vs. Multi RL-agent approaches
• Different optimization targets for the 

investigation:
− Target temperatures or temperature limits
− Minimization of the energy demand
− Considerati
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Reinforcement learning (RL) for the optimization-based control of a 
thermal management systems

Agent

Main Network
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- 60 % 

Simulation for Artemis Motorway 130 @ 30 °C
TEM, Base – Motor Temperature (rule based), TEM, RL – Motor Temperature (RL based),
TInv, Co, Base – Motor Temperature (rule based), TInv, Co, RL – Motor Temperature (RL based),
cPump, Base – Pump Duty Cycle (rule based), cPump, RL – Pump Duty Cycle (RL based),
cFan, Base – Fan Duty Cycle (rule based), cFan, RL – Fan Duty Cycle (RL based),
ETot, Base – Total Energy (rule based), ETot, Base – Total Energy (RL based),
vveh – Vehicle Speed
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The use of machine learning approaches requires a rethink of the 
development process 

𝑥
𝑦1

𝑦2

Employ fast-calculating models

Data-Driven 
(sub-)Models

Simulation Model
Creation

Use of Fast-Calculating 
Models

Pretraining with 
Reinforcement Learning 

(RL)
Fine-Tuning with 

Real Data Deployment

Use the simulation to 
pretrain the RL model, 
allowing it to learn optimal 
control strategies

Training

Model

Speed

After pretraining, fine-tune the RL 
model with real-world data to adapt 
it to actual operational conditions

Test

Real-time 
control for 
dynamic 
environments

ImplementBenefits of Machine 
Learning: Reinforcement 
Learning

Benefits of Machine 
Learning: System 
Identification

The targeted use of machine learning can generate significant advantages
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Next Steps
• Development of holistic MPC for thermal 

system with complex heat pump systems
• Improvement of Machine Learning Approaches 

for the use in thermal system development 
and control definition

• Combination of MPC Controls and prediction 
models generated by ML

MPC and machine learning (ML) will make a significant contribution to 
improving the thermal management of vehicles
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